Agroforestry mellangrodor & mob grazing 7-8 December 2017 Stockholm

Stephen Briggs

INNOVATION for AGRICULTURE

- 1. Why is agroforestry different ?
- 2. Impact on farm soils, resource use, biodiversity, productivity ?
- 3. Silvopasture & Silvoarable opportunities
- 4. Bluebell Farms Itd our experience

Competition for land

Resource degradation

Agricultural challenges ahead.....

High input monoculture <u>- is it yesterdays approach?</u>

Inputs more expensive & less available ?

Increase productivity ?

Better resource use ?

Protect & enhance biodiversity ?

What is a farmers job.....

& turn it into carbon (crops, animal feed etc)

Capturing the sun

Potential daily sun hours

Capturing the sun

Potential daily sun utilisation by combinable crops

Trees important for climate change adaptation ✓ Could trees have an important role in agriculture ? Agroforestry– an alternative approach ?

Agriculture or forestry ?

UK : 66% agriculture; 11% Tree cover

Agroforestry could make a significant contribution to tree planting targets

Source : Eurostat 2009;

Nr Le Mans France early 20th C

Le bocage dans le Perche, près de Nogent-le-Rotrou (Eure-et-Loir) - Cl. L.P.V.A.

Agroforestry is not a mixture of agriculture and forestry : it's a *hybrid* farming system

'modern systems adapted to modern agriculture'

Complementary Combinations are Key

Crops & trees use water, light, nutrients from different 'spaces' and at 'different periods' during the season

Monoculture Crops grow 0 -1 m above ground only

interesting the second of the

Monoculture roots grow 0 -1 m below ground only

of

sun & water

Crops grow 0 -10m

above ground

Improved root spread,

nutrient use & reduced leaching

- 1. Why is agroforestry different ?
- 2. Impact on farm soils, resource use, biodiversity, productivity ?
- 3. Silvopasture & Silvoarable opportunities
- 4. Bluebell Farms Itd our experience

Soil Research

Forest tree roots

Agroforestry tree roots

Agroforestry

Forest plantation

Biodiversity & Ecosystems services research

Comparison of species richness between agroforestry (AF) and monoculture (mono) at 6 farms in England 2009-2011. Source : A Varah Reading University

Source : J McAdam AFBI

Agroforestry has enhanced biodiversity

i.e biological control of aphids in wheat Reduced pesticide use?

Environmental protection

Riparian Buffers

Surface run off

What about resource utilisation & & Competition for resources ?

- Improved soil & water quality protection
- •Wind speeds reduced
- •Reduced evaporation and water loss from crops
- Microclimate modified

Reduced Nitrogen leaching

Up to 50% less N lost under Agroforestry than arable

Trees capture N not used by crops

Source : Research by INRA Restinclières, France

Monoculture

Agroforestry

How can we compare productivity?

An LER of 1.4 means 100 ha of agroforestry produces as much crop & tree products as 140 ha farmland where trees and crops are separated

Land Equivalent Ratio (LER) (Mead and Willey, 1980)

Balancing productivity with environment management

http://www.cranfield.ac.uk/sas/naturalresources/research/projects/safe.jsp

Is agroforestry scalable to mainstream agriculture?

UK – 4.7 million ha arable land

Henan Province 3.2 million ha

China - Henan province 3.2 million ha of Paulownia tree / wheat intercrop Crop land is scarce in China!

As the trees mature - arable crop output decreases

Combined value of arable crop + timber increases with time

- 1. Why is agroforestry different ?
- 2. Impact on farm soils, resource use, biodiversity, productivity ?
- 3. Silvopasture & Silvoarable opportunities
- 4. Bluebell Farms Itd our experience

Tree forage – increasing interest

- Trace minerals
- Protein rich leaves
- Medicinal benefits
- Diet supplementation
- Willow & poplar browse?

Orchards

Woodland grazing

Agroforestry & crop production

Grain production

Biomass

Crop rotation & timescales longer

Trees bring up nutrients from deep Leaf fall provides fertiliser Nutrients available to crops

11.1

Iowland agriculture

Catchment scale

Converting woodlands to woodland grazing ?

Opportunities for improved land and economic output ?

Upland systems

Agroforestry plots at Glensaugh

Driving.

Fruit & Nuts

Timber products

Biomass

- AGFORWARD <u>www.agforward.eu/</u>
- AGROFE <u>www.agrofe.eu</u>

- 1. Why is agroforestry different ?
- 2. Impact on farm soils, resource use, biodiversity, productivity ?
- 3. Silvopasture & Silvoarable opportunities
- 4. Bluebell Farms Itd our experience

Bluebell Farms Ltd

Agroforestry into practise

•250ha organic farm
•Owned, tenanted, contract
•52ha agroforestry

Whitehall Farm cropping

Clover	10ha
W Wheat	20ha
W & S Oats	60ha
Leeks	10ha
Apple trees	4ha
Environment	6.0ha
Total	110ha

- 2009-2011 yields
- WW av.5.2t/ha
 - Best 6.25t/ha
 - Worst 4.4t/ha
- W & S Oats av.6.75t/ha
 - Best 8.0t/ha
 - Worst 3.2t/ha
- Conventional yields (historic)
 - WW 8.6t/ha (3.5t/ac)
 - OSR 3.7t/ac (1.5t/ac)
 - S Beet 60.5t/ha (24.3t/ac)
- Organic is c.73% 80% of conventional yield

Drivers

Multifunctional land use
Cropping & enterprise diversity
Soil protection
Conservation & Habitat creation
Market opportunities

Soil erosion - a serious issue!

Soil erosion - a serious issue!

Limitations

15yr tenancy

- Retain CAP eligibility
 - Capital
- Profitability
- No livestock facilities

Agroforestry system - 85 trees per ha

Intensive orchard – 850 trees per ha

100

Agroforestry 52ha

..... 24m

......

3m

Layout

- 85 Vs 850 trees per ha
- 3m between each tree in the row
- 27m between each row
- **3m pollen rich strip under trees**
 - 24m working width between rows

Tree & Variety

- Rootstock & Vigour
 - MM106
- Pest & Disease tolerance
- Soil suitability
- Drought & scab tolerance
- Low input 'easy care' system
- Eating vs Juicing
- Heritage vars. to aid pollination

Pinova	388
Fiesta	313
Red Devil	195
Limelight	184
Red Windsor	540
Rajka	300
Red Falstaff	1102
Herefordshire Russet	350
Saturn	278
Bramley	482
Adams Pearmain	90
Ashmeads Kearnell	89
Chivers Delight	89

• Picking – mid Sept (Red Windsor) to late October (Pinova)

27m

24m

Winter 2009

Research

- RSPB
- Barn Owl breeding & monitoring
- Wheat Link
- Legume Link
- ORC Eco-system services baseline fauna survey and on –going with PhD
- ORC Agroforestry
- Reading Uni MSc Soil Structure differences organic vs conventional farms
- Reading Uni PhD insect and work populations under legumes
- Own work on Min-Till and Agroforestry

Summary of biodiversity baseline data from Whitehall Farm, Butterflies, bumblebees and flora

	Organic Arable	Agroforestry	Conventional
Pieris brassicae/rapae	47	23	18
Pieris napi	4	2	3
Maniola jurtina	13	39	7
Inachis io	8	20	11
Pyronia tithonus	2	3	8
Vanessa cardui	0	1	1
Aglais urticae	1	2	0
Ochlodes sylvanus/Thymelicus			
sylvestris	5	7	1
Total abundance	80	97	49
Total no. Spp.	7	8	7

Table 1.1 Butterfly abundance in three management systems, Farcet, Cambs.

-	N 1 1
	K-1-1/2
	the A
A TA	alit.

	Organic Arable	Agroforestry	Conventional
Bombus lapidarius	37	43	6
B.terr/luc	13	25	10
B.pascuorum	3	0	0
B.hortorum	1	0	0
Total abundance	54	68	16
Total no. spp	4	2	2

 Table 1.2. Bumblebee abundance in three management systems, Farcet, Cambs.

Biodiversity & Ecosystems services research

Comparison of species richness between agroforestry (AF) and monoculture (mono) at 6 farms in England 2009-2012. Source : A Varah Reading University

Yields and economics

UK farmer experiences

Whitehall Farm

• Capital costs

- 4.00ha tree lines £150/ha pollen/wildflowers £0.13/tree £600
- 4500 trees (apple) £12/tree (tree, post, guard, mulch mat, plant) £54,000
- TOTAL £54,600
- Organic conversion (Top fruit) conversion grant £28,000
- £26,000 to recover investment from output
 - Yr1 4 zero yield
 - Year $4 1.1t/ha \times 4ha \times £850/t = £3750$
 - Year 5 1.8t/ha x 4ha x £850/t = £6120
 - Year 6 3.2t/ha x 4ha x £850/t = £10,880 << (break even at yr 6.5)</p>
 - Year 7 -6.25t/ha x 4 x £850 = £21,250
- Management & Maintenance
 - Replanting 2%/yr £1000/yr
 - Pruning 14 days / yr £1,120/yr £0.25/tree
 - Harvesting 10 days / yr 4 people £3,500/yr £077/tree

Wheat / Apple orchard monocultures vs Wheat – Apple Agroforestry – at yr 5

	land area	yield	Value	Component	Total
	5	ha/yr	ER	Output	Output
		10.		£/ha/yr	£/ha/yr
Monoculture				1000	12
Apple orchard @ 1000 trees / ha	100	10.4 t	850	8840	in the second
				1000	8840
Organic wheat		5.0 t	270	1350	- 0.0
					1350
Agroforestry				12645	and the second second
Apple @ 90 trees / ha	13	1.1 t	850	765	
					765
Organic wheel	87	5.01	270	1350	
					1350
					2115
LER = 1.1	11	In uniner di	(ter is	etad uppforeth oid	5
	10.4	The subscripts ridd	One or line	etaci munaculture codil	5

i.e. 10% more land needed under monocultures to produce same yields

Willow alley cropping at Wakelyns

Productivity – an example

AGROFORESTRY

CONTROL

But remember this is productivity of only one component of the AF system – productivity of the trees need to be included in total productivity!

Land Equivalent Ratio

<u>Willow</u>

SRC Plantation: 25 odt/ha every 3 years = 8.33 odt/ha/year

Agroforestry: 6.7 odt/ha every 2 years = <u>3.35 odt</u>/ha/year

<u>Winter wheat (organic)</u> Monoculture: <u>5 t/ha</u>

Agroforestry: 2007-2011 average for Wheat 6.98 t/ha

Shaded area @ 50% yield = 0.13 ha (0.45 t/ha) +

Non shaded area @ 100% yield = 0.67 ha (4.68 t/ha) Wheat output = 5.13 t/ha

SRT coppice willow / wheat monocultures

VS

Willow – Wheat Agroforestry

	land area	yield	Value	Component	Total	7
	5	ha/yr	ER	Output	Output	
		1.05		£/ha/yr	£/ha/yr	
Monoculture				1	1.1	
SRT Plantation Willow	100	8.33 odt	60	499.8		
				1000	499.8	1
Organic wheat	100	51	270	1360	101225-1	1
					1350	Î
Agroforestry		1.1.1.1.1.1.1		525.5		1
Willow	20	3.35 odt	60	201		
					201	
Wheat 100%	67	4.681	270	1263.6		
Shaded wheat 50%	13	0.451	270	\$25.5		
		5:131	270		1385 1	
					1586.1	
LER = 1.43	3.35	Treagraficentity yield	, oprix	etak upafaretry salt	5.13	
	8.33	The mountainer pick	(Deerla	estavic ministrality of stabil	5	-

Land Equivalent Ratio

LER= $\frac{Tree\ agroforestry\ yield}{Tree\ monoculture\ yield} + \frac{Crop\ or\ livestock\ agroforestry\ yield}{Crop\ or\ livestock\ monoculture\ yield}$

- LER = <u>3.35</u> + <u>5.13</u> 8.33 5
- LER = 0.40 + 1.03
- LER = 1.43

i.e. 43% more land needed under monocultures to produce same yields.

Pictures of Whitehall Farm

3m wide Nectar & Wild flower strip Under tree rows

Drilling 2017

52ha of Agroforestry at my own farm in Cambridgeshire

Robocrop

Controlled traffic farming

Garford

Contact :	NICK MORRES BRITISH SUGAR PLC WISSINGTON SUGAR FACT COLLEGE ROAD WISSINGTON PE33 900	TORY	Client : BLUEBELL FARMS LTD WHITEHALL FARMS RAMSEY ROAD FARCET PETERBOROUGH PE7 3DR				
	Tel.: 01366 377364	B 28		01/53/2233			
Local Rep	DANIEL GODSMARK	de for el enquities	Card Number 29110/12				
Telephone Sample Ma	i Itx : Agricultural Soli			Date Received Date Reported	05-Nov-12 06-Nov-12		

SOIL ANALYSIS REPORT

Laboratory	122	Field Details	1.1		Index		(videfiect) figm		
Sample Reference	NO.	Name or 0.5. Reference with Oropping Details	Soli pH	P	к	Mg	*	к	- 10
126477112	1	1 3.3 Nectared Other Grap Into Other Grap	6.3	3	2.	3	26.4	155	106
128479/12	2	2 12:2 hextanes Other Grap Into Other Grap	6,4	з	2+	з	28.6	182	107
126476/12	3	3 4.5 hectorec Wheer Wheat into Spring Whear	6.8	з	э	2	31.2	272	93
12648012	4	4 6 D hectares Money Wheat into Spring Wheat	6.5	3	3	2	29.0	282	98
128481/12	5	5 2-P hectarec Writer Wheat into Spring Wheat	7,3	э	2+	2	41.4	217	87
128482/12	8	7 8.4 hectores Other Crap Into Other Crap	5.9	3	3	3	26.8	256	118

If general fertiliser and lime recommendations have been requested, these are given on the following sheets.

The analytical methods used are as described in DEPRA Reference Book 427

The index values are determined from the DEPTIA Partician Recommendations RECOV BIN Editor (Appandix 4)

Soil Health monitoring

SOIL ANALYSIS RESULTS

Texture: 8	land 321	4. Sill 43%, C	lay 25%	Colour			
PERSONAL PROPERTY.	48844	VERYLOW	LOW	MEAN	HOH	VERY HIGH	
14 JP	1.00	The second second		-	_		
Propherus P regi	3 1			-			
Potentian A regr	100 1	1. I.					
Magnesium life mer	-	and the owner where					
BACKS-ALTINESTS			_				
Organic Mader %	24	1. Contraction (1997)			فمصروع والم		
Cris Ratio	11.0	1 m m m m m m m m m m m m m m m m m m m		-			
Alleste Allenger				-			
Merson Thi Aussy	171.00	-					
Sumer of rat	- 24			-			
Transmone	1446						
Dana Ding							
CONTROL BOOM SATUR	a fun			-		-	
080 100	14	the second second				100	
Cetium Ce %	41.3		-	-			
Magneture log %	4.3						
Certing Rate	18	A DESCRIPTION OF TAXABLE PARTY.	-				
Polecium II II	4.2			_			
Taker No C	- 11						
Low a t	-						
Offen 6	- 10					-	
Dala summerie			1.1	_		-	
No. 79	-						
Marybalamum late mgd	4.00						
Court in my	4.00						
lastat is of	134			-			
De Die	11			-			
Urgens in 19	47.			-			
Catel Co regi	1.4	-	-	-			
Arres & regi	1.00	-	_	-			
Circleton \$1. ut	3044	-		-			
	-						

And in Condition with ADD TAXABLE VIEW

	\sim	T) E:	00 44 1256 749763 info@sofbrolab.co.uk
_		W:	www.solfbiolab.co.uk
Soi	Riol ab	A	Suite 213, The Convencial Centre
501	iDioLab 4		Picket Flece, Andover
54	pecialists in soil testing		Hampshire, SP11 GRU; England
		Company Reg. No.:	9122781
		VAT No.	294 9672 47
Client:	Soll Association		
	CT total	Outer	28.11.2014
		Sample ID:	58L086 - Whitehall Farm
Contact:	Smon Partey	Crop	Arable

Soll Microbiology Report

Organism Biomast							
Anelpis	Units	Result	Guideline	Low Contract of the second	Optimal	High	
Moisture content	26	42.00	15-55		100000	1.11	
Active Bacteria	HB/E	22.4	22 - 25		117		
Total Bacteria	MB/8	362.0	150 - 300				
Active Fungi	HAD/R	\$3.7	20-25				
Total Forgi	146/6	208.0	150 - 300				
Hyphal Diameter	um.	2.75	12.5				

Organism Ratios						
Analytis Units	Result	Guideline	Low	Optimul	High	
Active/Total Bacteria	0.06	0.15-0.20				
Active/Total Pungi	0.26	0.25-0.20				
Active Fungi/Active Bacteria	2.4	1.0-2.0				
Total Fungi/Total Bacteria	0.56	10-20	1			

				Protozoa		
Analysis	UNIX	Result	Guideline	Low	Optimal	High
Plageflates	140/g	7894	15000			
Amorban	140/g	962	>5000	1.00		
Cillates	No/I	132	50-200			10

				Nersatodes	والمستعدة الترجع فرقده والمستعد	
Analysis	. Units	Result	Guideline	Law	Optimal	High
Total Nematodes	190/g	10	20-20	han the second		and store
Nematode types	Fungal 1	eeders: J	%. Bacteria f	leeders: 34%, Predator	s: 5%, Plant parasitic: 28%	6, Juveniles: 16%

			Myc	owhisal Colonisation		
Analytis	Units	Result	Guideline	terre a statement a series	Optimal	High
Ectomycomhizee	*	NA	30-50			
Endomycorrhisae	*	14	20.50			

Potencial Nitrogen in Soll						
Nitropen (N)	1g/ha	84-112*	Potentially cycled for a period of 3-6 months			
*Please note that th	tits wallue its	of betalor	the microbiological activity and is not a chemical measure of nitrogen.			

Controlled Traffic Farming

Conventional traffic v. CTF

Companion planting, Relay cropping & precision Ag

Specialist markets

Storage

Market

Processing

Concluding thoughts

Unexpected Issues

- Security
- Dry autumn/spring
 establishment
- Hares-re-guarding
- Pigeons & Rooks
- Road safety
- Planes!

Food and Agriculture Organization of the United Nations

www.fao.org/soils-2015

Agroforestry = 'Ecological' intensification

Summary;

- Improved resource capture and use
- Profitability equal to or greater than monoculture
- Soil and environment protection
- Enhanced biodiversity
- Upland systems improve productivity of land & livestock
- Silvoarable 80-120 trees/ha density ideal on 24, 36m alleys
- Alley crops maintain annual income -Trees provide long term income & capital asset Improved resource use
- Policy developments required

For construction....

There was a 'breakthrough' moment

I believe that agroforestry is a 'climate smart' breakthrough for agriculture

Farmers should adopt agroforestry on at least 20% of their land Agroforestry is one of the few options with the potential to help reduce greenhouse gas emissions, help protect natural resources whilst at the <u>same time</u> producing more food and biomass

Trees will grow in most places !

YOURBEAUTIFULLIFE

LOOK DEEP INTO NATURE, AND THEN YOU WILL UNDERSTAND EVERYTHING BETTER.

-Albert Einstein